Amaya Gallagher-Syed

Machine Learning Scientist | BioAI

cvfoto10.jpg

67-75 New Rd, E1 1HH

London, UK

I’m a final year PhD student at the Digital Environment Research Institute (DERI) of Queen Mary University of London. I work at the intersection of :computer: AI, :seedling: biology and :pill: health! My PhD supervisors are Professors Michael Barnes, Myles Lewis and Greg Slabaugh

Research focus

My research focus currently lays in developing biologically aligned, explainable deep learning algorithms for multistain histopathology data and transcriptomics of autoimmune disease’s. I work in hope AI research will help us understand the complex, wonderful world of biology, immunology and pathogenesis ✨ :dizzy:

selected publications

  1. BioX-CPath: Biologically-driven Explainable Diagnostics for Multistain IHC Computational Pathology
    Amaya Gallagher-Syed, Henry Senior, Omnia Alwazzan, Elena Pontarini, Michele Bombardieri, Costantino Pitzalis, Myles J Lewis, Michael R Barnes, Luca Rossi, and Gregory Slabaugh
    IEEE Conference on Computer Vision and Pattern Recognition, 2025
  2. Perteval-scfm: Benchmarking single-cell foundation models for perturbation effect prediction
    Aaron Wenteler, Martina Occhetta, Nikhil Branson, Magdalena Huebner, Victor Curean, William Dee, William Connell, Alex Hawkins-Hooker, Pui Chung, Yasha Ektefaie, and  others
    bioRxiv, 2024
  3. Going Beyond H&E and Oncology: How Do Histopathology Foundation Models Perform for Multi-stain IHC and Immunology?
    Amaya Gallagher-Syed, Elena Pontarini, Myles J. Lewis, Michael R. Barnes, and Gregory Slabaugh
    NeurIPS 2024 AIM-FM Workshop, 2024